
NPSCS-91-007 -

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A233 661

AN OBJECT-ORIENTED DESIGN METHODOLOGY

Everton G. de Paula, Captain, Brazilian AF
Michael L. Nelson, Majo- USAF

January 1991

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Department of Computer Science, Code CS
Monterey, California 93943-5100

n UIL FILE COPY] 91 4 12 052

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Supefintendent Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate
School Research Council.

Reproduction of all or part of this report is authorized.

MICHAEL L. NELSON
Assistant Professor
of Computer Science

Reviewed by: Released by:

ROBERT B. MCGHEE PAUL J.RARTO
Chairman Dean of Research
Department of Computer Science

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

-- Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Ia REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECUR TY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release! distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE is limited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-91-007

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Department of Computer Scienc (If applicable)

Naval Postgraduate School CS

6r. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Monterey, CA 93943

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School CS O&MN, Direct Funding

8c. ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO NO. ACCESSION NO
Monterey, CA 93943I I

11. TITLE (Includc Security Classification)

An Object-Oriented Design Methodology

12. PERSONAL AUTHOR(S)
Everton G. DePaula and Michael L. Nelson

13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Summary FROM _ TO _ 91 Jan 31 32

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Object-Oriented Design, Object-Oriented Programming,
Inheritance, Class Hierarchy, Low Cost Combat Direction

System

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

To date, there is no design methodology that is universally accepted by the object-

oriented community. Several such methodologies, however, have been proposed. They

are all somewhat similar in their approach to identifying and defining the objects and

in organizaing them into class hierarchies.

The methodology proposed in this paper is the result of a research project in object-

oriented design, and benefitted from the experience acquired during the design of the

Tactical Database for the Low Cost Combat Direction System.

..... 1 AVA! ABIL11Y OF BSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

22 UNCLASSIFIE DUNLI MITE D C1 SAME AS RPT C3 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL '22b TELEPHONE (include Area Coe 22c OFFICE SYMBOL

Michael L. Nelson (408)646-2449 CS NE

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 UNCLASSIFIED

TABLE OF CONTENTS

1 INTRODUCTION 1

1.2 OBJECT-ORIENTED TERMINOLOGY 1

1.2 OBJECT-ORIENTED DESIGN 3

1.2.1 DATA-DRIVEN vs RESPONSIBILITY-DRIVEN DESIGN 3

2 THE METHODOLOGY 4

2.1 IDENTIFICATION OF THE OBJECTS AND CLASSES 4

2.1.1 INITIAL DEFINITION OF THE OBJECTS AND CLASSES 4

2.1.2 ANALYSIS OF THE OBJECT'S VARIABLES 5

2.1.3 ANALYSIS OF THE OBJECT'S METHODS 6

2.2 REFINEMENT OF THE OBJECTS AND CLASSES 6

2.2.1 ADDITION OF NECESSARY INFORMATION 6

2.2.2 ELIMINATION OF REDUNDANT INFORMATION 6

2.2.3 DETERMINATION OF CLASS AND INSTANCE VARIABLES 7

2.2.4 IDENTIFICATION OF COMPOSITE OBJECTS 7

2.3 ORGANIZATION OF THE CLASSES INTO A HIERARCHY 7

2.3.1 ANALYSIS OF THE IMPLEMENTATION LANGUAGE 7

2.3.2 CONSTRUCTION OF THE HIERARCHIES 8

2.3.3 REVIEW OF THE CLASSES' VARIABLES/METHODS 9

3 THE DESIGN OF THE TACTICAL DATABASE 9

3.1 IDENTIFICATION OF THE OBJECTS AND CLASSES 10

3.1.1 INITIAL DEFINITION OF THE OBJECTS AND CLASSES 10

3.1.2 ANALYSIS OF THE OBJECT'S VARIABLES 12

3.1.3 ANALYSIS OF THE OBJECT'S METHODS 13

3.2 REFINEMENT OF THE OBJECTS AND CLASSES 13

3.2.1 ADDITION OF NECESSARY INFORMATION 13

3.2.2 ELIMINATION OF REDUNDANT INFORMATION 13

3.2.3 DETERMINATION OF CLASS AND INSTANCE VARIABLES 13

3.2.4 IDENTIFICATION OF COMPOSITE OBJECTS 13

3.3 ORGANIZATION OF THE CLASSES INTO A HIERARCHY 15

3.3.1 ANALYSIS OF THE IMPLEMENTATION LANGUAGE 15

3.3.2 CONSTRUCTION, OF THE HIERARCHIES 15

3.3.3 REVIEW OF THE CLASSES' VARIABLES/METHODS 17

4 FINAL DESCRIPTION OF THE CLASSES 19

5 CONCLUSIONS 24

REFERENCES 26

INITIAL DISTRIBUTION LIST 27

LIST OF FIGURES

Figure 1: Language-Independent Class Definition 3

Figure 2: Initial Class Hierarchy 16

Figure 3: TRACK Class Hierarchy 16

Figure 4: SPECIAL POINT Class Hierarchy 17

Figure 5: TACTICAL DATABASE Class Hierarchy 18

ii

1 INTRODUCTION

Object-oriented programming (OOP) is becoming widely accepted as a
viable approach to nearly any programming project. It may be the only
feasible strategy for those types of projects that have not been served
well by more traditional approaches. Additionally, it is also proving
to be quite useful for more conventional projects.

However, the field is currently lacking an established design method-
ology. The basic ideas of objects, classes, and inheritance are all
becoming fairly well established, but there is no set of rules or guide-
lines available to help determine just what is the "best" approach to the
design of an OOP application. What is needed is something along the
lines of the normalization technique of relational databases [Ullm82]
(for even if a normalized set of relations is not "ideal", it at least
provides a "good starting point").

Unfortunately, we are not yet to the point of being able to provide a
set of steps which will always result in an iceal design. Rather, what
we have developed is a series of questions/considerations which should
help the object-oriented designer to arrive at what is at least a reason-
ably good starting point. Our approach utilizes the knowledge gained
from surveying existing literature and the experience gained during the
design of the Tactical Database for the Low Cost Combat Direction System
(LCCDS)l [dePa90, Ross89, SS90].

1.1 OBJECT-ORIENTED TERMINOLOGY

It is assumed that the user is at least somewhat familiar with the
basic concepts of OOP. However, a brief introduction is included as the
terminology often varies greatly from one system to the next.2

The primitive element of an object-oriented programming language is
the object. An object encapsulates both data (attributes or variables)
and behavior (functions, operations, or methods) . That is, an object
remembers certain information and it knows how to perform certain oper-
ations. [WWW90]

Individual objects may have similarities. In any given application,
some objects will behave differently from one another while other objects
will behave in a like manner. Objects which share both the same behavior
and structure are said to belong to the same class. A class is a generic
specification for an arbitrary number of similar objects. A class can
be thought of as a template for a specific kind of object. An object
belonging to a class is said to be an instance of that class. [WWW90]

The terms class and type are sometimes used interchangeably. Herein
the term type will be used in accordance with more conventional program-
ming languages. A type is any data type, whether it is provided by the

'It should be realized that while this paper uses the LCCDS Tactical
Database for examples, some of the objects, classes, and issues involved
have been simplified - the purpose of this paper is to present our design
methodology, r-t the LCCDS Tactical Database itself. For more precise
intormation on the LCCDS Tactical Database, refer to [dePa90].

2For a more complete introduction, the reader should refer to [Nels90,

SB86, Wegn87].

system (e.g., integer, real, character, etc) or user defined (i.e., a
class). Additionally, we may occasionally refer to a set of values, such
as (0..59) or {N,S}, as a type. Sets of values such as these can easily
be defined either as a restriction of a system-supplied type or as a
user-defined class.

The attributes that characterize a class (object) are referred to as
variables and the operations (or procedures) defined for that class
(object) are referred to as methods. The variables that form a class can
be divided into two categories: class variables and instance variables.
A class variable is shared in both name and value by all instances
(objects) of a class. An instance variable is shared in name only by all
instances (objects) of a class. That is, each object has its own local
version of an instance variable, while all the objects of the class
access the same class variable. [Nels90]

A composite object (also called an aggregate object) is simply an
object that contains other objects as instance variables or as class var-
iables. This occurs when an instance variable or a class variable is
itself an object.

In a composite object, the relationship between the object and its
variables is described as an 'is-part-of' or a 'has-a' relationship, in
which the object is viewed as a whole and its variables are viewed as its
component parts. That is, each component object is-part-of the composite
object. Alternatively, it can also be said that the composite object
has-a component object.

Inheritance can be formally (but simply) defined as a code sharing
mechanism. It allows a new class to be defined based upon the definition
of an existing class, without having to copy all of the code of this
other class. A class inherits both behavior (i.e., methods) and struc-
ture (i.e., variables) from another class, called a superclass. A class
which inherits from some superclass is called a subclass. Inheritance
is sometimes referred to as an 'is-a' relationship, in contrast to the
'has-a' or 'is-part-of' relationship of composite objects. [Nels90]

Single inheritance is when a class is allowed to have only one super-
class. Multiple inheritance allows a class to have several superclasses.
Selective inheritance (also called exclusive inheritance) is a form of
inheritance in which only some methods and/or variables are inherited
from the superclass(es).

An abstract class is one that is not intended to produce instances.
Abstract classes are designed for inheritance purposes only (i.e., to
provide structure and/or behavior to one or more subclasses). A class
that is designed to be instantiated is called a concrete class. Concrete
classes are designed primarily so that their instances are useful, and
secondly so that they may also be usefully inherited from. [WWW90]

Both abstract and concrete classes may make use of inheritance. How-
ever, abstract classes are generally used only to factor out attributes
and/or operations that are common to more than one class, putting them
all together in one place so that any number of subclasses may make use
of them. [WWW90]

Figure 1 (an extension of [Nels9J0]) shows how class definitions will
be represented in a language-independent manner in this paper. Note the
convention that class names are written in CAPITALS, variable and method

2

names are written in SMALL CAPITALS, variable types are written in normal
type, and variable values are written in italics. This form of represen-
tation will be used throughout this paper.

CLASS: CLASS NAME

Superclasses: SUPERCLASS 1, SUPERCLASS 2,
Class Variables: CLASS VARIABLE 1: type [default value]

CLASS VARIABLE 2: type [default value]

Instance Variables: INSTANCE VARIABLE 1: type [default value]
INSTANCE VARIABLE 2: type [default value]

i

Methods: METHOD 1
METHOD 2

ti

Figure 1: Language-Independent Class Definition

1.2 OBJECT-ORIENTED DESIGN

The process of object-oriented design begins with the discovery of the
classes and objects that represent the problem domain. It stops whenever
the designer finds that there are no new abstractions or mechanisms that
might be used to modify the class hierarchy [Booc9l]. The result of an
object-oriented design is a hierarchy of classes [WEK90].

The class hierarchy is based on inheritance. Inheritance is used to
create a new class of objects as a refinement of another, to factor out
the similarities between classes, and to design and specify only the
differences for the new class. In this way, new classes can be created
quickly and efficiently. [WWW90]

The main reason for organizing the classes in a hierarchy is that this
type of organization allows the user to obtain simpler and more easily
maintainable code while saving considerable storage space. It allows the
developer to quickly and easily reuse existing code, thereby minimizing
code duplication.

1.2.1 DATA-DRIVEN vs RESPONSIBILITY-DRIVEN DESIGN

Object-oriented design has been categorized as being either data-
driven or responsibility-driven [WW89]. With a data-driven approach, it
is the structure of the data which drives the design. Two questions are
central to this approach: (1) What (structure) does this object
represent?; and (2) What operations can be performed by this object? A
data-driven approach is said to be easier for programmers experienced
with traditional procedural languages, as they simply adapt their
previous experience to the design of the object-oriented system.
However, it is claimed that this approach violates encapsulation in that
it makes the structure of the object part of its definition, and that
this leads to operations which reflect the given structure. [WW89]

The responsibility-driven approach, which has preserving encapsulation
as its primary goal, is based upon the client/server model. This model
describes the interaction between the client and the server. A contract
is established which specifically states the ways in which the client can
interact with the server. The supposed advantage of this approach is
that it concentrates on what the server does for the client rather than
on how the server does it. The responsibility-driven approach focuses

3

on the contract by asking: (1) What actions is this object responsible
for?; and (2) What information does this object share? (note that this
shared infocmation may or may not be part of the structure of the object;
it could, for example, compute the data or request the information trom
another object). [WW89]

We are not totally convinced of this design dichotomy. We believe
that the two approaches can be construed as being essentially one and the
same, as long as the designer strives for a high degree of encapsulation.
For example, a data-driven approach may start out with an initial struc-
ture for an object (class). However, if the design then proceeds from
a responsibility-driven point of view, this initial structure only means
that the object is responsible for being able to provide that information
on demand; it makes no difference whether or not the object actually
maintains that information, computes it, or requests it from some other
object. This is essentially the approach that we have taken in our work.

2 THE METHODOLOGY

Our methodology consists of the following steps:

(1) Identification of the objects and classes.

(a) Initial definition of the objects and classes.

(b) Analyis of the object's variables.

(c) Analysis of the object's methods.

(2) Refinement of the objects and classes.

(a) Addition of necessary information.

(b) Elimination of redundant information.

(c) Determination of class and instance variables.

(d) Identification of composite objects.

(3) Organization of the classes into a hierarchy.

(a) Analysis of the implementation language.

(b) Construction of the hierarchies.

(c) Review of the classes' variables/methods.

It is important to note that the design as a whole is an iterative
process. That is, each step may need to be reviewed several times before
the hierarchy of classes constructed is considered satisfactory.

2.1 IDENTIFICATION OF THE OBJECTS AND CLASSES

The primary motivation for identifying objects and classes is to match
the system as closely as possible to the conceptual view of the real
world [CY90]. The design of an object-oriented system begins with the
identification of the objects, yet this identification is perhaps the
most challenging phase of an object-oriented design process [WEK9J0.

2.1.1 INITIAL DEFINITION OF THE OBJECTS AND CLASSES

The purpose of this step is to come up with a list of potential
objects and/or classes. The description of each object in the list
contains the object's initial set of variables and methods.

4

Identification of the objects and classes requires a considerable
knowledge of the problem domain (problem space). The developer must
study the problem requirements as well as learn the terminology and
fundamentals of the problem domain.

It has been suggested that a preliminary set of candidate classes and

objects can usually be derived from the following sources [SM88]:

Tangible things: Cars, radar data, sensors, airplanes.

Roles: Mother, engineer, systems analyst.

Events: Landing, request, print.

Interactions: Loan, meeting, intersection.

A similar list of sources of potential classes and objects has also been
suggested [Ross87]:

People: Humans who carry out some function.

Places: Areas set aside for people or things.

Things: Physical objects that are tangible.

Organizations: Formally organized collections of people, resources,
facilities, and capabilities having a defined mission, whose
existence is largely independent of individuals.

Concepts: Principles or ideas not tangible per se.

Events: Things that happen, usually to something else at a given date
and time, or as steps in an ordered sequence.

All of these ideas are useful in finding candidate objects. It should
be noted, however, that the sources of potential objects are virtually
unlimited. The problem space is, obviously, the best place to begin the
search.

2.1.2 ANALYSIS OF THE OBJECT'S VARIABLES

The purpose of this step is to analyze the variables defined for the
objects which resulted from step 2.1.1 and list those observations that
are considered to be significant to the construction of the class hier-
archy. The following guidelines govern this phase:

Analyze the object's variables to make certain that each variable is
absolutely necessary for the description of the object (class).
Unnecessary variables should, obviously, be eliminated, and missing
variables should be added. Deciding which set of attributes best
describe the object and/or which attributes are essential to make the
representation of the object as close as possible to the real world
situation is a task that requires a thorough working knowledge of the
problem space.

Look for variables that are common to groups of objects (classes).
These commonalJties are fundamental to the creation of the class
hierarchy.

Look for variables that have the same value for all objects which are
instances of the same class. Variables that have the same value for
all objects of a class are potential class variables. Variables that
do not change in value for all objects of a class may be treated as
constants. Analyze constants to determine whether they should be
implemented as variables or as methods which simply return the
constant value.

5

Look for variables that can be calculated or derived from other vari-
ables. These variables may be replaced by methods which calculate
them.

Look for variables that can be decomposed into more elementary vari-
ables. These variables may themselves be defined as individual
objects. Objects which contain such variables are potential compos-
ite objects.

Look for variables that are defined for only one class. Classes that
contain these variables may be classes without subclasses in the
class hierarchy.

2.1.3 ANALYSIS OF THE OBJECT'S METHODS

The purpose of this step is to analyze the methods defined for the
objects which resulted from seep 2.1.1 and list observations that may be
important in the construction of the class hierarchy. The following
guidelines are used during this phase:

Look for methods that are common to several classes. Commonalities
of methods are fundamental to the creation of the class hierarchy.

Every concrete class should have, as a minimum, a set of methods
whose purpose is to create, delete, maintain, and display the
instances (objects) of that class. Note, however, that abstract
classes do not need tnese methods as they do not have any instances.

In order to enforce encapsulation, it may also be necessary to define
methods for accessing and updating each variable.

2.2 REFINEMENT OF THE OBJECTS AND CIASSES

2.2.1 ADDITION OF NECESSARY INFORMATION

With the basis in the problem space, analyze the objects to make sure
that all necessary information can be obtained through the set of methods
defined so far. If not, then add the necessary variables/methods.

2.2.2 ELIMINATION OF REDUNDANT IUFO.MATION

Eliminate va-iables that can be derived from other variables. This
Cn be done by defining a method that calculates the desired value using
.-tie information provided by other variables. It is not necessary to
define a variable to store information that can be calculated.3

Note that in the case of 'A derives B' and 'B derives A', one may have
to look to the problem space to determine whether it is A or B that should
be stored as an actual variable. Also remember that having the two vari-
ables A and B defined for an object (class) at this point in the design
simply means that the object is responsible for providing this informa-
tion upon request - it is even possible that neither variable will
actually be a part of the final design.

3It should be realized that this is a general "rule of thumb". For
efficiency considerations, it may be necessary to actually have both
variables in the object.

6

2.2.3 DETEL14INATION OF CLASS AND INSTANCE VARIABLES

A variable that has the same value for all objects (instances) of a
class can be defined a class variable. Those variables whose values vary
from object to object are defined to be instance variables.

Some class variables may not oe expected to change in value, in which
case they may be more properly considered to be constants. These con-
stant values could b. more simply provided by methods which return the
constant value without checking the value of any variable. Alterna-
tively, these kind of variables could also be defined as class variables.
In most cases, it would probably be more appropriate to define constants
via methods rather than variables.

2.2.4 IDENTIFICATION OF COMPOSITE OBJECTS

Define as individual objects those variables that can be decomposed
into more elementary variables. This is an iterative step in that the
newly defined objects may themselves have variables that can be further
decomposed into more elementary variables. This process continues until
the object's variables can no longer be decomposed.

2.3 ORGANIZATION OF THE CLASSES INTO A HIERARCHY

2.3.1 ANALYSIS OF THE IMPLEMENTATION LANGUAGE

The design of the class hierarchy depends directly on the facilities
provided by the implementation language or OODBMS used. In this phase,
the f'llowing questions should be answered:

Does the system provide single, multiple, cr selective inheritance?

If the system provides multiple inheritance, what are its conflict
resolution rules (i.e., the way in which the system handles the con-
flicts that may arise when the names of variables and methods are
used more than once)?

CEn methods inherited from a superclass be overridden (redefined) in
the subclasses?

Can variables inherited from a superclass be overridden (redefined)
in tne subclasses?

Does the system provide single, multiple, or selective inheritance? The
form of inheritance provided by the system has a direct influence on the
design of the class hierarchy. A design utilizing multiple inheritance
will most likely be quite different from a design utilizing only sfngle
inheritance.

If the system provides multiple inheritance, what are its conflict reso-
lution rules? Multiple inheritance, even though giving more flexibility
to t-.t design, shouli be used carefully as conflicts involving the names
of variables and methods may occur. That is, problems may arise if two
or more superclasses have variables/methods with the same name (see
[Nels90, NM091] for more information on this problem).

Can methods inherited from a superclass be overridden (redefined) in the
subclasses? Most systems do allow the redefinition of inherited methods
in subclasses. Redefinition permits a method to be modified or custom-
ized to meet the specific needs of the subclass, while keepinq the same
name as that found in the superclass.

7

Can variables inherited from a superclass be overridden (redefined) in
the subclasses? Some OOP languages do not allow the redefinition of
inherited variables in subclasses. That is, a subclass cannot have a
variable with the same name as an inherited variable. This results in
a name conflict and, consequently, in a compilation error. Other OOP
languages, however, do permit variables to be renamed in subclasses.
Name conflicts are avoided in this case by using the locally defined
version.

2.3.2 CONSTRUCTION OF THE HIERARCHIES

The following guidelines for the analysis of inheritance relationships
between classes have been proposed [WWW90), and they have (for the most
part) been adopted in our design methodology:

Model a "kind-of" hierarchy.

Factor common methods as high as possible.

Do not allow abstract classes to inherit from concrete classes.

Eliminate classes that do not add functionality.

Model a "kind-of" hierarchy. A "kind-of" hierarchy means that every
class should be a specific kind of its superclasses. Subclasses should
support all of the methods and variables defined by their superclasses
and possibly more. Ensuring that this is so will make the classes more
reusable as it becomes easier to see where, in an existing hierarchy, a
new class should be placed.

When a subclass would include only some of the methods and/or
variables defined by its superclasses, it is good practice to create an
abstract class with all of the methods and variables common to both
classes. The hierarchy is then restructured in such a way that both the
class and its former superclass become subclasses of the newly created
abstract (super)class.

Factor common methods as high as possible. Factoring common methods as
high as possible in the hierarchy is based on the principle that if a set
of classes all support a common method and/or variable, then they should
all inherit that method/variable from a common superclass. If a common
superclass does not already exist then create one, and move all of the
common methods/variables to it. This new superclass will more than
likely be an abstract class.

Do not allow abstract classes to inherit from concrete classes. Abstract
classes, by their very nature, support their methods and/or variables in
implementation-independent ways. Concrete classes, on the other hand,
may specifically depend upon implementation. In the case where an ab-
stract class does inherit from a concrete class, it is still possible to
achieve this goal by creating another abstract class from which both the
abstract and concrete classes can inherit their common methods/variables.

Eliminate classes that do not add functionality. Classes which have no
methods should ordinarily be discarded. However, if a class inherits a
method that it will implement in some unique way, then it adds function-
ality in spite of having no methods of its own, and should therefore be
kept.

It has also been said that abstract classes which define no methods
have no use, and they should therefore be eliminated [WWW90]. This is

8

where we differ in this step from [WWW90]. Any class, even though
defining no methods of its own, can still have variables that are used
to store important iniormatio,,. Therefore, only those classes which add
neither functionality nor store any information should be discarded.'

2.3.3 REVIEW OF THE CLASSES' VARIABLES/METHODS

During the construction of the class hierarchies, achieving a perfect
match among the classes' variables and methods is highly unlikely. For
example, when a class is defined as a subclass of another class, the
subclass inherits all of the variables and methods of its superclass.
However, the subclass may not actually need all of the inherited
variables/methods. If the system allows selective inheritance, then
specific variables/methods can be excluded, but if the system does not
allow selective inheritance then some classes will have to be modified.

These changes in the definition of certain classes are necessary for
the achievement of similarity among classes. Variables/methods that are
not strictly necessary could be added to a class in order to 'force' it
to fit into the set of subclasses of a given class. This seems to con-
tradict the philosophy of step described in section 2.2.2 (Elimination
of Redundant Information). However, the purpose of these changes in the
classes' variables/methods is to allow the design of the simplest class
hierarchy possible while still keeping the semantics inherent to the
problem space.

However, the hierarchy of classes should also reflect the real world
situation. That is, a contrived class hierarchy should not be created
just for the sake of capturing certain commonalities [CY90]. Therefore,
the variables/methods added to a class must also be meaningful in terms
of the problem space.

3 THE DESIGN OF THE TACTICAL DATABASE

A Combat Direction System (CDS) consists of a complex set of data
inputs, user cinsoles, converters, adapters, and radio terminals inter-
connected with high speed computers and their stored programs. Combat
data is collected, processed, and composed into a picture of the overall
tactical situation that enables the force commander to make rapid and
accurate decisions. [DON85]

The Low Cost Combat Direction System (LCCDS) [dePa90, Ross89, SS901,
sponsored by the Naval Sea Systems Command (NAVSEA), will implement the
basic features of a CDS on commercially available microprocessor-based
workstations. The system is intended for use on board non-combatant
ships, where no automated combat information processing capability
currently exists. The Tactical Database (TDB) is that part of the LCCDS
which contains information necessary to establish an accurate picture of
a ship's environment.

4It should be noted, however, that [WWW90] represents a strictly
responsibility-driven approach; therefore, no variables have been defined
as of yet. Since we incorporate variables at a much earlier stage of our
design, it is possible to have meaningful classes which have variables
only (i.e., they have no methods).

9

3.1 IDENTIFICATION OF THE OBJECTS AND CLASSES

3.1.1 INITIAL DEFINITION OF THE OBJECTS AND CLASSES

Normally, this phase would start with an in-depth analysis of the
problem space so that the designer could make a list of potential objects
and/or classes. In this case, the initial phase of the design consisted
basically of the analysis of the set of objects proposed in [SS90], as
most of the objects were readily identified therein.

The minimum set of objects (classes) that the TDB should contain has
been specified as follows [SS90]:

CLASS: OWNSHIP

Variables: GEOGRAPHICAL POSITION

TIME OF POSITION
COURSE
SPEED
ORIGIN
TRACK NUMBER
TYPE
TRACK HISTORY

Methods: MONITOR OWNSHIP POSITION
NAVIGATIONAL COMPUTATION
CPA PROCESSING

Description: An object of class OWNSHIP represents the ship that
is operating the LCCDS. It therefore follows that there should be
only a single instance of OWNSHIP for each Tactical Database.

CLASS: TENTATIVE TRACK

Variables: GEOGRAPHICAL POSITION

RELATIVE POSITION
TIME OF POSITION
COURSE
SPEED
CATEGORY
IDENTITY
ORIGIN
TRACK NUMBER
TYPE

Methods: NEW TRACK ESTABLISHMENT
TRACK POSITION DATA
TRACK COURSE AND SPEED DETERMINATION
DEAD RECKONING
INITIAL CATEGORY ASSIGNMENT
INITIAL IDENTITY ASSIGNMENT
TRACK TERMINATION

Description: An object of class TENTATIVE TRACK represents a new
track generated by local sensors (radar) . Once a valid course and
speed is established for it, the Tentative Track will become a
Firm Track. This can happen as a result of any of the following
conditions: (1) After three manual position updates by the user;
(2) Category entered manually before three position updates; or
(3) Manually declared firm by the user.

10

CLASS: REFERENCE POINT, NAVIGATION HAZARD, and MAN IN WATER

Variables: GEOGRAPHICAL POSITION

RELATIVE POSITION
TIME OF POSITION

CATEGORY
IDENTITY

ORIGIN

Methods: CPA PROCESSING

Description: An object of class REFERENCE POINT represents a
fixed point on the surface of the Earth which is used as a
reference. An object of class NAVIGATION HAZARD represents a
point on the surface which might be hazardous to navigation
(icebergs, shallow waters, reefs, mines, etc) and therefore must
be avoided. An object of class MAN IN WATER represents a point on
the surface of the water on which a man (or a group of men) is
supposed to be.

CLASS: DATA LINK REFERENCE POINT

Variables: GEOGRAPHICAL POSITION

TIME OF POSITION
CATEGORY

IDENTITY
ORIGIN

Methods: CPA PROCESSING

Description: An object of class DATA LINK REFERENCE POINT
represents a fixed geographic reference position common to all
Link 11 paiticipating units (a Link 11 unit is a source of remote
information).

CLASS: FORMATION CENTER and POSITION AND INTENDED MOVEMENT

Variables: GEOGRAPHICAL POSITION

TIME OF POSITION

RELATIVE POSITION

COURSE

SPEED
CATEGORY

IDENTITY

ORIGIN

Methods: DEAD RPCKONING

CPA PROCESSING

Description: An object of class FORMATION CENTER represents a
moving geographic position representing the center of a group of
ships steaming in formation. An object of class POSITION AND
INTENDED MOVEMENT represents the planned position o± Ownship or
the formation based on a pre-computed base course and speed to
arrive at a destination at the required time.

1i

CLASS: AIR TRACK, SURFACE TRACK, and SUESURFACE TRACK

Variables: GEOGRAPHICAL POSITION

RELATIVE POSITION

TIME OF POSITION

COURSE

SPEED
HEIGHT (defined only for AIR TRACK)
DEPTH (defined only for SUBSURFACE TRACK)
CATEGORY

IDENTITY
ORIGIN

TRACK NUMBER
TYPE

Methods: CPA PROCESSING
TRACK COURSE AND SPEED DETERMINATION
DEAD RECKONING

TRACK POSITION PREDICTION
TRACK HISTORY PROCESSING
MANUAL TERMINATION

IDENTIFICATION FUNCTION

Description: An object of class AIR TRACK represents a real-world
object which is in the air and, consequently, has HEIGHT as one of
its attributes to indicate its current altitude. An object of
class SURFACE TRACK represents a real-world object which is on the
surface. An object of the class SUBSURFACE TRACK represents a
real-world object which is underwater and, consequently, has DEPTH
as one of its attributes.

CLASS: WAYPOINT

Variables: GEOGRAPHICAL POSITION
RELATIVE POSITION

TIME OF POSITION

STEAMING ROUTE

CATEGORY
IDENTITY

ORIGIN

Methods: WAYPOINT GEOMETRY

Description: An object of class WAYPOINT represents a destination
point on the surface. Each waypoint can be viewed as a "node" in
a determined route.

3.1.2 ANALYSIS OF THE OBJECTS' VARIABLES

Following is summary of observations about the objects' variables
that were considered important to the construction of the class
hierarchy:

GEOGRAPHICAL POSITION, TIME OF POSITION, and ORIGIN are common to all
classes.

CATEGORY and IDENTITY are common to all classes except OWNSHIP.

The classes TENTATIVE TRACK, SURFACE TRACK, AIR TRACK, and SUBSURFACE
TRACK all have similar variables.
The classes REFERENCE POINT, NAVIGATION HAZARD, MAN IN WATER, DATA
LINK REFERENCE POINT, FORMATION CENTER, and POSITION AND INTENDED
MOVEMENT all have similar variables.

12

GEOGRAPHICAL POSITION, TIME OF POSITION, and RELATIVE POSITION can each be
decomposed into more elementary variables.

GEOGRAPHICAL POSITION and RELATIVE POSITION are not independent (i.e.,
either one can be calculated from the other).

3.1.3 ANALYSIS OF THE OBJECTS' METHODS

Following are observations about the objects' methods that were
considered important to the construction of the class hierarchy:

CPA PROCESSING is common to all classes except TENTATIVE TRACK and
WAYPOINT.

The classes AIR TRACK, SURFACE TRACK, and SUBSURFACE TRACK all have
the same methods.

The classes REFERENCE POINT, NAVIGATION HAZARD, MAN IN WATER, DATA
LINK REFERENCE POINT, POSITION AND INTENDED MOVEMENT, and FORMATION
CENTER all have the same methods, with the exception of DEAD RECKONING.

3.2 REFINEMENT OF THE OBJECTS AND CLASSES

3.2.1 ADDITION OF NECESSARY INFORMATION

The methods CREATE INSTANCE, DELETE INSTANCE, UPDATE INSTANCE, and DISPLAY
INSTANCE were added to all of the classes to ensure that each concrete
class has a set of methods foi creating, deleting, maintaining, and dis-
playing its instances (objects).

3.2.2 ELIMINATION OF REDUNDANT INFORMATION

The main result of this step was the decision not to include both the
variables GEOGRAPHICAL POSITION and RELATIVE POSITION together in the definition
of a class. When either variable was defined for a certain class, the
other was then calculated by a method.

3.2.3 DETERMINATION OF CLASS AND INSTANCE VARIABLES

It turns out that every class "variable" in our system was actually a
class "constant" (i.e., not only did it have the same value for all
instances of a class, that value is not expected to ever change at run
time). The decision was made to define a method to return a constant
value rather than defining a class variable in all cases.

3.2.4 IDENTIFICATION OF COMPOSITE OBJECTS

The analysis of the objects' variables, showed that each of the
variables GEOGRAPHICAL POSITION, RELATIVE POSITION, and TIME OF POSITION can be
decomposed into more elementary variables.

GEOGRAPHICAL POSITION has two components: latitude and longitude.
Latitude and longitude, in turn, each have two components: angle and
hemisphere (north/south or east/west) . The component angle can be
further divided into three components: degree, minute, and second.

Therefore, it is possible to create three new classes: ANGLE;
LATITUDE; and LONGITUDE. These objects are defined as follows:

13

CLASS: ANGLE

Superclasses: None
Class Variables: None

Instance Variables: DEGREE: (0. .359) [0]
MINUTE: (0. .59) [0]
SECOND: (0. .59) [0]

Methods: GET & SET DEGREE

GET & SET MINUTE

GET & SET SECOND

CLASS: LATITUDE

Superclasses: None

Class Variables: None

Instance Variables: LATITUDE ANGLE: ANGLE [0:0:0]
LATITUDE HEMISPHERE: {N, S) [N]

Methods: GET & SET LATITUDE ANGLE
GET & SET LATITUDE HEMISPHERE

CLASS: LONGITUDE

Superclasses: None

Class Variables: None

Instance Variables: LONGITUDE ANGLE: ANGLE [0:0:0]
LONGITUDE HEMISPHERE: {E, WI [W]

Methods: GET & SET LONGITUDE ANGLE
GET & SET LONGITUDE HEMISPHERE

The variable relative position has two components: bearing and range.
A bearing (or direction heading) can be further divided into an angle and
a reference north (true or magnetic) . Two more classes can therefore be
created: DIRECTION and RELATIVE POSITION. These classes are defined as
follows:

CLASS: DIRECTION

Superclasses: None

Class Variables: None

Instance Variables: DIRECTION ANGLE: ANGLE [0:0:0]
REFERENCE NORTH: {T, M} [T]

Methods: GET & SET DIRECTION ANGLE
GET & SET 'EFERENCE NORTH

1:LASS: RELATIVE POSITION

Superclasses: None

Class Variables: None

Instance Variables: REL POS BEARING: DIRECTION [0:0:0:T]
RANGE: real [0.0]

Methods: GET & SET REL POS BEARING
GET & SET REL PUS RANGE

The variable time of position has four simple components: hour,
minute, second, and time zone. Another class, TIME, was then defined:

14

CLASS: TIME

Superclasser: None

Class Variables: None

Instance Variables: HOUR: (00. .23) [00]
MINUTE: (00. .59) [00]
SECOND: (00. .59) [00]
TIME ZONE: (A.. Z) [Z]

Methods: GET & SET HOUR

GET & SET MINUTE

GET & SET SECOND
GET & SET TIME ZONE

3.3 ORGANIZATION OF THE CLASSES INTO A HIERARCHY

3.3.1 ANALYSIS OF THE IMPLEMENTATION LANGUAGE

Based on the assumption that the Gemstone Database Management System
[KBCG89, Serv89] is the system that best fits the requirements of the
LCCDS Project [Ross89], the following facts should be taken into consid-
eration during the construction of the class hierarchy:

Only single inheritance is allowed.

Methods inherited from a superclass can be redefined in subclasses.

Variables inherited from a superclass can be redefined in subclasses,
as long as the constraint on the variables defined in the subclass
are the same as or a subset of the constraint in the superclass.

3.3.2 CONSTRUCTION OF THE HIERARCHIES

As previously mentioned, the similarities of methods/variables among
classes is the fundamental factor in the construction of the class
hierarchies. However, it is important that the hierarchies should
represent the real world (problem space) as closely as possible. The
resulting hierarchy (or hierarchies) should not just be a number of
similar classes organized in an otherwise meaningless hierarchy.

In the design process, the similarities of methods/variables among
classes were listed in steps 3.1.2 (2.1.2) and 3.1.3 (2.1.3). Also, new
methods and variables were defined during step 3.2 (2.2) . The resulting
set of classes can then be organized into a hierarchy (or hierarchies).

It was observed that each of the classes defined for the Tactical
Database represents either a point (fixed or nonfixed position) or an
area (region) in the LCCDS scenario. This suggests a division of the
classes into two groups: points and areas. These two groups of classes
were named, respectively, TDB POINT (Tactical Database Point) and TDB
AREA (Tactical Database Area). Considering that all classes represent
real world objects, these two classes were defined as subclasses of the
class TDB OBJECT (Tactical Database Object). This initial class hier-
archy is shown in Figure 2.

The analysis of the commonalities among the classes AIR TRACK, SURFACE
TRACK, SUBSURFACE TRACK, and TENTATIVE TRACK showed that all of these
classes could be defined as subclasses of a class TRACK.

While the classes AIR TRACK, SURFACE TRACK, and SUBSURFACE TRACK
represent, respectively, objects that are in the air, on the surface, and

15

Figure 2: Initial Class Hierarchy

underwater, the class TENTATIVE TRACK represents an object which can be
in any of these categories. Objects of classes AIR TRACK, SURFACE TRACK,
and SUBSURFACE TRACK are considered firm tracks because their positions
can be updated by the system at regular intervals of time. On the other
hand, an object of class TENTATIVE TRACK only becomes a firm track after
a valid course and speed are established for it.

In terms of the real world situation, it is meaningful then to create
the class TRACK with two subclasses: FIRM TRACK and TENTATIVE TRACK. The
class FIRM TRACK, in turn, is divided into three subclasses: AIR TRACK,
SURFACE TRACK, and SUBSURFACE TRACK.

Note also that the class OWNSHIP, even though not representing an
object that is being tracked by the ship's sensors, can be considered as
a particular case of the class SURFACE TRACK for which the relative
position is equal to zero (the relative position of all other objects is
calculated with respect to Ownship). The class OWNSHIP was, thereiore,
defined as a subclass of the class SURFACE TRACK.

Thus, considering the class TRACK as the root, the hierarchy of
classes shown in Figure 3 was defined.

-I

[OWNSHIP]
Figure 3: TRACK Class Hierarchy

16

The analysis of the commonalities among the classes REFERENCE POINT,
DATA LINK REFERENCE POINT, WAYPOINT, FORMATION CENTER, NAVIGATION HAZARD,
MAN IN WATER, and POSITION AND INTENDED MOVEMENT showed that these
classes can be defined as subclasses of a class SPECIAL POINT. However,
the variables COURSE and SPEED were not defined for the classes REFERENCE
POINT, WAYPOINT, and DATA LINK REFERENCE POINT (i.e, these points are
fixed). Based on this difference, these classes can be divided into two
groups: fixed and nonfixed.

Therefore, two subclasses of the class SPECIAL POINT were created:
FIXED SPECIAL POINT and NONFIXED SPECIAL POINT. The classes REFERENCE
POINT, DATA LINK REFERENCE POINT, and WAYPOINT were defined as subclasses
of FIXED SPECIAL POINT and the classes FORMATION CENTER, NAVIGATION
HAZARD, MAN IN WATER, and POSITION AND INTENDED MOVEMENT were defined as
subclasses of NONFIXED SPECIAL POINT.

Therefore, considering SPECIAL POINT as the root, the hierarchy of
classes shown in Figure 4 was defined.

SPECIA
POINT

FENE HAZAD WAE OEM

FPIgur :SPCAPONCl SEHIArch

POIEI POIT

REFERENCE REFERENCE WAYPOINT

POINT POINT

CENTER HAZARD INTRMOENDED

Figure 4: SPECIAL POINT Class Hierarchy

Since the classes SPECIAL POINT and TRACK both represent points in the
LCCDS scenario, they were each defined as subclasses of the class TDB
POINT. Also, since TDB POINT was defined as a subclass of the class TDB
OBJECT, the entire hierarchy is now complete. This final hierarchy is
shown in Figure 5.

3.3.3 REVIEW OF THE CLASSES' VARIABLES/METHODS

Following are some of the more important changes which were made in
the definition of various classes in order to make them fit into the
class hierarchy created (see [dePa90] for all of the changes):

The variable TDB OBJECT NUMBER was added to the definition of all
classes, in order to identify uniquely every instance of each class.
The variable TRACK NUMBER was, consequently, eliminated in the classes

17

SPECIAL PE PECIA
POINT POINT

FIRMTEATAN

SRFERCE SREFERCE AYP N

POINT POINT

FORMATION NAVIGATION MAN IN POINND
CENTER HAZARD F WATER MOVEMENT

Figure 5: TACTICAL DATABASE Class Hierarchy

18

for which it was originally defined as it is now unnecessary.' The
method CPA PROCESSING was added to the definition of the classes
TENTATIVE TRACK and WAYPOINT. With this addition, CPA PROCESSING

became common to all classes.

The variables RELATIVE POSITION, ORIGIN, and IDENTITY were added to the
class OWNSHIP. These variables were assigned the constant values
0:0:O:T:O.0, Local Manual, and Friendly, respectively.

The variable ORIGIN was redefined for the class SPECIAL POINT, being
allowed to assume only the values Local Manual and Remote.

4 FINAL DEFINITION OF THE CLASSES

All of the classes for the Tactical Database may now be defined as

follows:

CLASS: ANGLE

Superclasses: None

Class Variables: None

Instance Variables: DEGREE: (0. .359) [0)
MINUTE: (0. .59) [0]
SECOND: (0. .59) [0]

Methods: GET & SET DEGREE
GET & SET MINUTE

GET & SET SECOND

CLASS: LATITUDE

Superclasses: None

Class Variables: None

Instance Variables: LATITUDE ANGLE: ANGLE [0:0:0]
LATITUDE HEMISPHERE: {N, S) [N]

Methods: GET & SET LATITUDE ANGLE
GET & SET LATITUDE HEMISPHERE

CLASS: LONGITUDE

Superclasses: None

Class Variables: None

Instance Variables: LONGITUDE ANGLE: ANGLE [0:0:0)
LONGITUDE HEMISPHERE: {E, W) [W]

Methods: GET & SET LONGITUDE ANGLE

GET & SET LONGITUDE HEMISPHERE

5It should be noted that anytime a variable or method name is changed
in order to simplify the class hierarchy, it could cause problems for
users of the system if they are used to an existing system (manual or
automated) which utilizes the original name. This particular problem is,
however, very easy to rectify. Simply provide additional methods (using
the original name) which in turn call the methods with the new names or
access the renamed variable (e.g., the value of the variable TDB OBJECT
NUMBER could also be available via the methods GET & SET TRACK NUMBER)

19

CLASS: DIRECTION

Superclasses : None

Class Variables: None

Instance Variables: DIRECTION ANGLE: ANGLE [0:0:0]
REFERENCE NORTH: {T, M) IT]

Methods: GET & SET DIRECTION ANGLE

GET & SET REFERENCE NORTH

CLASS: RELATIVE POSITION

Superclasses: None

Class Variables: None

Instance Variables: REL POS BEARING: DIRECTION [0:0:0:T]
RANGE: real [0.0]

Methods: GET & SET REL POQ BEARING

GET & SET REL ?OS RANGE

CLASS: TIME

Superclasses: None

Class Variables: None

Instance Variables: HCOUR: (00. .23) [00]
MINUTE: (00. .59) [00]
SECOND: (00. .59) [00i
T ME ZONE: (A. . Z) [Z]

Methods: GET & SET HOUR

GET & SET MTC2TE

GET & SET SECOND

GET & SET TIME ZONE

CLASS: TDB OBJECT

Superclasses: None

Class Variables: None

Instance Variables: TDB OBJECT NUMBER: integer [0]
TIME OF POSITION: TIME [00:00:00:Z]
ORIGIN: {Local Manual, Local Auto, Remotel

[Local Manual]

Methods: MENU
CREATE iNSTAICE

DELETE INSTANCE

UPDATE INSTANCE

DISPLAY INSTANCE

CPA PROCESSING

GET & SET TDB OBJECT NUMBER

GET & SET TIME OF POSITION

GET & SET ORIGIN

20

CLASS: TDB AREA

Superclasses: TDB OBJECT

Class Variables: None

Instance Variables: CENTER GEO POSITION: GEOGRAPHICAL POSITION
[0:O:0:N]

NORTH LIMIT: GEOGRAPHICAL POSITION [0:0:0:N]
SOUTH LIMIT: GEOGRAPHICAL POSITION [0:0:0:Sl
EAST LIMIT: GEOGRAPHICAL POSITION [0:0:0:E]
WEST LIMIT: GEOGRAPHICAL POSITION [0:0:0:W]
IDENTITY: {Hot, Protected, Unprotected)

[Unprotected]
COURSE: ANGLE [0:0:0]
SPEED: real [0.01

Methods: DEAD RECKONING

DRAW AREA
GET & SET CENTER GEO POSITION

GET & SET NORTH LIMIT

GET & SET SOUTH L-MIT
GET & SET EAST LI&rT
GET & SET WEST LIMIT

GET & SET IDENTITY
GET & SET COURSE

GET & SET SPEED

CLASS: TDB POINT

Superclasses: TDB OBJECT

Class Variables: None
Instance Variables: None

Methods: PLOT TDB POINT

CLASS: TRACK

Superclasses: TDB POINT

Class Variables: None

Instance Variables: RELATIVE FOSITTON: RELATIVE POSITION
[0:0:0:T:0.0]

COURSE: ANGLE [0:0:0]
SPEED: real [0.0]
IDENTITY: (Unknown, Friendly, Hostile)

[Unknown]

Methods: GET & SET RELATIVE POSIILON
GET & SET COURSE
GET & SET SPEED
GET & SET IDENTITY

CALCULATE RELATIVE POSITION
TRACK COURSE AND SPEED DETERMINATION

DEAI RECKONING

21

CLASS: TENTATIVE TRACK

Superclasses: TRACK

Class Variables: None

Instance Variables: CATEGORY: {Air, Surface, Subsurface) (Air]

Methods: NEW TRACK ESTABLISHMENT

INITIAL CATEGORY ASSIGNMENT

INITIAL IDENTITY ASSIGNMENT
GET & SET CATEGORY

CLASS: FIRM TRACK

Superclasses: TRACK

Class Variables: None

Instance Variables: None

Methods: IDENTIFICATION FUNCTION
TRACK HISTORY PROCESSING

CLASS: AIR TRACK

Superclasses: FIRM TRACK

Class Variables: None

Instance Variables: HEIGHT: real (0.0]
Methods: GET CATEGORY

GET & SET HEIGHT

CLASS: SURFACE TRACK

Superclasses: FIRM TRACK

Class Variables: None

Instance Variables: None

Methods: GET CATEGORY

CLASS: SUBSURFACE TRACK

Superclasses: FIRM TRACK

Class Variables: None
Instance Variables: DEPTH: real [0.0]

Methods: GET CATEGORY

GET & SET DEPTH

CLASS: OWNSHIP

Superclasses: SURFACE TRACK

Class Variables: None
Instance Variables: GEOGRAPHICAL POSITION: GEOGRAPHICAL POSITION

[0:0:0:N]
GREENWICH MEAN TIME: TIME [00:00:00:Z]
JULIAN DATE: (0001..9366) [0001]

Methods: MONITOR OWNSHIP POSITION

GET & SET GREENWICH MEAN TIME
GET & SET JULIAN DATE

22

CLASS: SPECIAL POINT

Superclasses: TDB POINT

Class Variables: None

Instance Variables: GEOGRAPHICAL POSITION: GEOGRAPHICAL POSITION
[0:0:0:N]

ORIGIN: {Local Manual, Remote) [Local Manual]

Methods: GET & SET GEOGRAPHICAL POSITION

GET & SET ORIGIN

CALCULATE RELATIVE POSITION

GET CATEGORY

CLASS: FIXED SPECIAL POINT

Superclasses: SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: None

CLASS: REFERENCE POINT

Superclasses: FIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY

CLASS: DATA LINK REFERENCE POINT

Superclasses: FIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY

CLASS: WAYPOINT

Superclasses: FIXED SPECIAL POINT

Class Variables: None

Instance Variables: STEAMING ROUTE: (1.. 6) [1]

Methods: WAYPOINT GEOMETRY
GET & SET STEAMING ROUTE
GET ORIGIN

GET IDENTITY

CLASS: NONFIXED SPECIAL POINT

Superclasses: SPECIAL POINT

Class Variables: None
Instance Variables: COURSE: ANGLE [0:0:0]

SPEED: real [0.0]

Methods: DEAD RECKONING
GET & SET COURSE
GET & SET SPEED

23

CLASS: FORMATION CENTER

Superclasse8: NONFIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY

CLASS: NAVIGATION HAZARD

Superclasses: NONFIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY

CLASS: MAN IN WATER

Superclasses: NONFIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY

CLASS: POSITION AND INTENDED MOVEMENT

Superclasses: NONFIXED SPECIAL POINT

Class Variables: None

Instance Variables: None

Methods: GET IDENTITY
GET ORIGIN

5 CONCLUSIONS

The primary goal of our design methodology is to provide a simple and
systematic way of approaching the problems of object-oriented design.
Even though the steps that form the methodology were proposed in a
certain logical order, they are flexible in the sense that the order in
which they are performed can be changed according to the designer's
preference. The iterative nature of the design process is evidence that
the order in which each step is accomplished is fairly flexible.

Presently, various object-oriented languages provide quite different
facilities and features. This explains the necessity of an analysis of
the implementation language prior to the construction of the class
hierarchies. However, some of these facilities and features are fairly
typical of object-oriented languages in general (i.e., they are provided
by nearly all of them). Thus, in order to produce a design that is
independent of the specific system used, the following should be
considered:

All object-oriented languages allow single inheritance, but not all
allow multiple inheritance or selective inheritance.

6An "object-oriented" language which does not provide inheritance is

more appropriately considered to be "object-based" [Wegn87].

24

The redefinition of inherited methods by the subclasses of a class
is allowed in nearly all object-oriented languages.

The redefinition of inherited variables by the subclasses of a
certain class is not allowed in all languages.

Not all object-oriented languages (including those provided by
OODBMSs) allow run-time changes in the definition of classes or in
the class hierarchy.

It is expected, however, that these differences will eventually
disappear with the evolution of object-oriented languages, giving the
designer more freedom to pursue a language-independent design.

25

REFERENCES

[Booc9l] G. Booch. Object-Oriented Design With Applications. Benjamin/Cummings
Publishing Co, Menlo Park, CA, 1991.

[CY90] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press
(Prentice Hall), Englewood Cliffs, NJ, 1990.

[daPa9Oj E.G. de Paula. A Tactical Database tor the Low Cost Combat Dizbction
System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec 1990.

[DON85] Department of the Navy. Systems Engineering Handbook, Volume I: Combat
Direction System Model 5. NAVSEA Technical Report No 0967-LP-027-8602, Feb 1985.

[KBCG89] W. Kim, N. Ballou, H-T. Chou, J.F. Garza, and D. Woelk. "The GemStone
Data Management System", in Object-Oriented Concepts, Databases, and Applica-
tions, edited by W. Kim and F.H. Lochovsky, ACM Press (Addison-Wesley Publishing
Co), New York, NY, 1989, pp 283-308.

[Nels90] M.L. Nelson. An Introduction to Object-Oriented Programming. Naval
Postgraduate School, Monterey, CA, Technical Report No NPS52-90-024, Apr 1990.

(NMO91] M.L. Nelson, J.M. Moshell, A. Orooji. "The Case For Encapsulated
Inheritance", Proceedings of the 24th Annual Hawaii International Conference on
System Sciences (HICSS-24), Vol II: Software Technology, Jan 1991, Koloa, HI, pp
219-227.

[Ross87] R. Ross. Entity modeling: Techniques and Applications. Database
Research Group, Boston, MA, 1987.

[Ross89] D.L. Ross. Object-Oriented Database Manager for the Low Cost Combat
Direction System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Dec
1989.

[SB86] M. Stefik and D.G. Bobrow. "Object-Oriented Programming: Themes and
Variations", The AI Magazine, Vol 6, No 4, Winter 1986, pp 40-62.

[Serv89) Servio Logic Corp. Programming in OPAL. Servio Logic Corp, Beaverton,
OR, 1989.

[SM88] S. Shlaer and S. Mellor. Object-Oriented Systems Analysis: Modeling the
World in Data. Prentice Hall, Englewood Cliffs, NJ, 1988.

[SS90] J. Seveney and G. Steinberg. Requirements Analysis for a Low Cost Combat
Direction System. Master's Thesis, Naval Postgraduate School, Monterey, CA, Jun
1990.

[Ullm82] J.D. Ullman. Principles of Database Systems. Computer Science Press,
Rockville, MD, 1982.

[Wegn87] P. Wegner. "Dimensions of Object-Based Language Design", OOPSLA'87
Proceedings, Oct 1987, Orlando, FL; special issue of SIGPLAN Notices, Vol 22, No
12, Dec 1987, pp 168-182.

(WEK90] A.L. Winblad, S.D. Edwards, and D.R. King. Object-Oriented Software.
Addison-Wesley Publishing Co, Reading, Mass, 1990.

[WW89] R. Wirfs-Brock and B. Wilkerson. "Object-Oriented Design: A
Responsibility Driven Approach", OOPSLA'89 Proceedings, Oct 1989, New Orleans,
LA; special issue of SIGPLAN Notices, Vol 24, No 10, Oct 1989, pp 71-75.

[WWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice-Hall, Inc, Englewood Cliffs, NJ, 1990.

26

DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943 2 copies

Center for Naval Analyses
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Director of Research Administration
Code 81
Naval Postgraduate School
Monterey, CA 93943 1 copy

Maj M.L. Nelson, USAF
Naval Postgraduate School
Code CS, Dept. of Computer Science
Monterey, CA 93943 5 copies

Professor LuQi
Naval Postgraduate School
Code CS, Dept. of Computer Science
Monterey, CA 93943 5 copies

Capt E.G. de Paula, Brazilian AF
Centro Thcnico Aeroespacial (CTA)
IAE - ESB
Sdo Jos6 dos Campos, SP, Brazil, 12225 5 copies

27

